

This is a comprehensive request to document a state-of-the-art AECO workflow. The resulting document is a detailed, phase-by-phase plan illustrating how the diverse software and hardware listed integrate into a single, cohesive project delivery system for the New Franklin Data Center (NFDC).

Workflow Document: New Franklin Data Center (NFDC)

Project Goal: Design, construct, and maintain a mission-critical, high-efficiency Data Center.

Core Principle: Data Continuity via the Autodesk Construction Cloud (ACC).

1. Project Foundation and Team Structure

Role	Core Software	Hardware/Reality Capture	Key Responsibility
Project Lead/BIM Manager	ACC / BIM Collaborate / Revit	VR Headsets	Defines EIR/BEP; manages CDE and multidisciplinary coordination.
Geospatial Manager	ESRI ArcGIS Pro / TBC	Trimble R12i GNSS	Manages all ground control, GIS layers, and spatial data validation.
Lead Civil/Survey Engineer	Civil 3D / TBC / PointCab	Trimble RTS / DJI L3	Site grading, utility design, and processing reality capture data.
Lead Architect/Structural	Revit / Navisworks	VR Headsets	BIM Authoring, cloud worksharing, and clash resolution.
MEP/Systems Engineer	•	IF800 Drone / Sentera 6X Thermal	Design and coordination of critical facility systems.
QA/QC Manager	BlueBeam Revu + Studio / ACC Build	Trimble XGRIDS K1	Documentation, submittals, field verification, and digital sign-offs.

GEODRONES | DESIGN SOLUTIONS

Role	ILIOPA SOTTWARA	Hardware/Reality Capture	Key Responsibility
Reality Capture Specialist	PointCab Nebula	II/Anmiisa i 3	Executes all site reality capture flights.

2. Phase 1: Geospatial Context and Master Planning

Objective: Establish the authoritative spatial framework and context-rich base model.

Step	Software/Hardware Workflow	Output in ACC/CDE
2.1 Reality Capture	M300 RTK + Zenmuse L3 executes high-accuracy	Raw point clouds and orthophotos uploaded to ACC Docs.
		Final, high-accuracy GCP report.
	cleans noise, and generates clean meshes/DTMs.	Clean, registered point cloud and DTM (published to ACC).
2.4 GIS Integration	environmental layers. The ArcGIS Connector for ACC	GIS Context Model (authoritative spatial data).
2.5 Site Validation (VR)	Project Lead uses VR to walk the site model, viewing terrain, slopes, and GIS overlays immersively to validate access and siting decisions.	Site Validation Report.
2.6 Civil Design Start	inesian in Civil 311 referencing the LILIVI and GIS data	Civil 3D Model (hosted in the cloud).

3. Name 2: Design, Coordination, and Intelligent Audit

Objective: Develop coordinated, clash-free models using cloud collaboration and AI/VR auditing.

GEODRONES | DESIGN SOLUTIONS

Step	Software/Hardware Workflow	Output in ACC/CDE
3.1 Co- Authoring	Lead Architect uses Revit Cloud Worksharing (via BIM Collaborate Pro). Lead Civil Engineer uses Collaboration for Civil 3D to share data references seamlessly in the CDE.	Live, Federated Models (Revit, Civil 3D, FABmep).
3.2 Al Design & Review	Revit AI extensions auto-route high-volume MEP systems and auto-check models against compliance standards (e.g., NFPA, building codes).	Automated Compliance Report.
3.3 Automated Clash Detection	BIM Collaborate's Model Coordination module runs automated clash detection between all federated models (Civil, Structural, MEP).	Clash Groups and Automated Issues.
3.4 VR Coordination Review	Architect and MEP Engineer use VR to collaboratively walk through the model at clash locations flagged by BIM Collaborate. Al-suggested resolutions are reviewed in the immersive environment, and Trimble SysQue resolves the changes	Finalized Design Packages.
3.5 Non-Model Review	QA/QC Manager uses BlueBeam Studio Sessions for real- time collaborative markup and sign-off on non-model documents (specs, submittals, contracts).	Stamped and signed PDF documents.

Objective: Field execution driven by digital data, validated by reality capture, and documented via mobile platforms.

Step	Software/Hardware Workflow	Output in ACC/CDE
4.1 Digital Layout	Field crew uses the Trimble RTS and Field Link to lay out critical points (footings, utility stub-ups) directly from the Revit and Civil 3D models stored in ACC.	Digital Layout Report (Trimble).
4.2 Earthwork	iredisters the scan, and CIVII 3D calculates volume	Volume Deviation Report.
A 3 Inarmai	performs flyover of the building envelope, identifying	Thermal Imagery (Geotagged photos linked to building model).

GEODRONES | DESIGN SOLUTIONS

Step	Software/Hardware Workflow	Output in ACC/CDE
4.4 Field Documentation	QA/QC Manager uses ACC Build mobile app for safety checks and issue logging. BlueBeam Revu is used for precise field measurements and sheet markups, which are linked to the corresponding ACC Issue.	Daily Reports, Issues Log, and Field RFI/Submittals.
4.5 Large Vehicle Logistics (Twist)	buses/trailers over the temperary site paths during the	Approved Traffic Control Plan (signed off via BlueBeam Studio).

5. Phase 4: Handover and Digital Twin Maintenance

Objective: Reconcile final conditions, formalize the As-Built model, and transition to Facilities Management (FM).

Step	Software/Hardware Workflow	Output in ACC/CDE
5.1 Final As- Built Capture	XGRIDS K1 is used for rapid internal scanning of exposed MEP systems and complex structural elements before closeout.	Final As-Built Point Cloud.
5.2 As-Built Reconciliation	update the Revit model. Final model reviewed and	Final As-Built BIM (Level 300+ of Information).
5.3 Digital Handover	ACC Assets links model elements to warranties, O&M manuals, and asset tags. Final utility/spatial data pushed to ESRI ArcGIS Pro for the client's FM GIS layer.	FM-Ready Digital Twin.
5.4 VR Maintenance	maintenance planning. When a sensor reports an issue,	VR Asset Management System (Digital Twin in perpetuity).